written specifications or recommendations for installation, operation, and calibration of the system. - (i) Specifications for differential pressure measurement devices used to measure velocity pressure shall be in accordance with section 2.2 of Method 2 (40 CFR part 60, appendix A). - (ii) Specification for differential pressure measurement devices used to measure pressure drop across a control system shall be in accordance with manufacturer's accuracy specifications. - (3) The surface tension of electroplating and anodizing baths shall be measured using Method 306B, "Surface Tension Measurement and Recordkeeping for Tanks used at Decorative Chromium Electroplating and Anodizing Facilities," appendix A of this part. This method should also be followed when wetting agent type or combination wetting agent/foam blanket type fume suppressants are used to control chromium emissions from a hard chromium electroplating tank and surface tension measurement is conducted to demonstrate continuous compliance. - (4) The owner or operator of a source required to measure the velocity pressure at the inlet to an add-on air pollution control device in accordance with §63.343(c)(2), shall establish the site-specific velocity pressure as follows: - (i) Locate a velocity traverse port in a section of straight duct that connects the hooding on the plating tank or tanks with the control device. The port shall be located as close to the control system as possible, and shall be placed a minimum of 2 duct diameters downstream and 0.5 diameter upstream of any flow disturbance such as a bend, expansion, or contraction (see Method 1, 40 CFR part 60, appendix A). If 2.5 diameters of straight duct work does not exist, locate the port 0.8 of the duct diameter downstream and 0.2 of the duct diameter upstream from any flow disturbance. - (ii) A 12-point velocity traverse of the duct to the control device shall be conducted along a single axis according to Method 2 (40 CFR part 60, appendix A) using an S-type pitot tube; measurement of the barometric pressure and duct temperature at each traverse point is not required, but is suggested. - Mark the S-type pitot tube as specified in Method 1 (40 CFR part 60, appendix A) with 12 points. Measure the velocity pressure (Δp) values for the velocity points and record. Determine the square root of the individual velocity point Δp values and average. The point with the square root value that comes closest to the average square root value is the point of average velocity. The Δp value measured for this point during the performance test will be used as the reference for future monitoring. - (5) The owner or operator of a source required to measure the pressure drop across the add-on air pollution control device in accordance with §63.343(c) (1) through (4) may establish the pressure drop in accordance with the following guidelines: - (i) Pressure taps shall be installed at any of the following locations: - (A) At the inlet and outlet of the control system. The inlet tap should be installed in the ductwork just prior to the control device and the corresponding outlet pressure tap should be installed on the outlet side of the control device prior to the blower or on the downstream side of the blower; - (B) On each side of the packed bed within the control system or on each side of each mesh pad within the control system; or - (C) On the front side of the first mesh pad and back side of the last mesh pad within the control system. - (ii) Pressure taps shall be sited at locations that are: - (A) Free from pluggage as possible and away from any flow disturbances such as cyclonic demisters. - (B) Situated such that no air infiltration at measurement site will occur that could bias the measurement. - (iii) Pressure taps shall be constructed of either polyethylene, polybutylene, or other nonreactive materials. - (iv) Nonreactive plastic tubing shall be used to connect the pressure taps to the device used to measure pressure drop. - (v) Any of the following pressure gauges can be used to monitor pressure drop: a magnehelic gauge, an inclined manometer, or a "U" tube manometer. ## § 63.344 (vi) Prior to connecting any pressure lines to the pressure gauge(s), each gauge should be zeroed. No calibration of the pressure gauges is required. (e) Special compliance provisions for multiple sources controlled by a common add-on air pollution control device. (1) This section identifies procedures for measuring the outlet chromium concentration from an add-on air pollution control device that is used to control multiple sources that may or may not include sources not affected by this subpart. (2) When multiple affected sources performing the same type of operation (e.g., all are performing hard chromium electroplating), and subject to the same emission limitation, are controlled with an add-on air pollution control device that is not controlling emissions from any other type of affected operation or from any non-affected sources, the applicable emission limitation identified in §63.342 must be met at the outlet of the add-on air pollution control device. (3) When multiple affected sources performing the same type of operation and subject to the same emission limitation are controlled with a common add-on air pollution control device that is also controlling emissions from sources not affected by these standards, the following procedures should be followed to determine compliance with the applicable emission limitation in §63.342: (i) Calculate the cross-sectional area of each inlet duct (i.e., uptakes from each hood) including those not affected by the standard. (ii) Determine the total sample time per test run by dividing the total inlet area from all tanks connected to the control system by the total inlet area for all ducts associated with affected sources, and then multiply this number by 2 hours. The calculated time is the minimum sample time required per test run. (iii) Perform Method 306 testing and calculate an outlet mass emission rate. (iv) Determine the total ventilation rate from the affected sources by using equation 1: $$VR_{tot} \times \frac{IDA_{i}}{\sum IA_{total}} = VR_{inlet}$$ (1) where $VR_{\rm tot}$ is the average total ventilation rate in dscm/min for the three test runs as determined at the outlet by means of the Method 306 testing; $IDA_{\rm i}$ is the total inlet area for all ducts associated with affected sources; $IA_{\rm total}$ is the sum of all inlet duct areas from both affected and nonaffected sources; and $VR_{\rm inlet}$ is the total ventilation rate from all inlet ducts associated with affected sources. (v) Establish the allowable mass emission rate of the system (AMR $_{\rm sys}$) in milligrams of total chromium per hour (mg/hr) using equation 2: $$\sum VR_{inlet} \times EL \times 60 \text{ minutes/hours} = AMR_{sys}$$ (2) where Σ VR $_{\rm inlet}$ is the total ventilation rate in dscm/min from the affected sources, and EL is the applicable emission limitation from §63.342 in mg/dscm. The allowable mass emission rate (AMR $_{\rm sys}$) calculated from equation 2 should be equal to or more than the outlet three-run average mass emission rate determined from Method 306 testing in order for the source to be in compliance with the standard. (4) When multiple affected sources performing different types of operations (e.g., hard chromium electroplating, decorative chromium electro- plating, or chromium anodizing) are controlled by a common add-on air pollution control device that may or may not also be controlling emissions from sources not affected by these standards, or if the affected sources controlled by the common add-on air pollution control device perform the same operation but are subject to different emission limitations (e.g., because one is a new hard chromium plating tank